LAB 9b:

Purpose:

The purpose of this lab is to explore the mechanics of using Protocol Extension via an exported API to effectively add virtual functions to a custom entity class. For the entity class we will use the jblob entity created in lab 9.

Lab Exercises:

First you will need to open the tempapi.mak project file and build the tempapi.lib static library based on source files in lab7. This library has the information necessary to resolve all references to the EntTemperature class when linking the rxhello9.arx application.

For a more thorough explanation of the tempapi.lib mechanism see the last section of this document.

Now close the tempapi.mak project and open the rxhello9.mak project.

In the lab7 subdirectory is the file TEMPAPP.CPP. Study the makeup of the protocol extension class EntTemprature in this file, as well as the implementations for AcDbCircle, AcDbRegion and the default for AcDbEntity. The value being computed is nonsensical, the point is the class and object structure involved.

Now take a look in RXHELLO9.CPP in this (lab9) directory. Find the "// ..." comment and define a class for a Protocol Extension object derived from EntTemprature that is to be applied to instances of Jblob.

Home Exercises:

Use Protocol Extension in conjunction with XDATA to store a scalar floating point value on selected AcDbEntities. At least two member functions are needed: to set and retrieve the value.

Explanation of tempapi library mechanism:

The source file tempapi.cpp implements the API class using the ACRX_API_CLASS_BODY macro, building the API library tempapi.lib. This provides the stub for inclusion in client applications.

No need to specify a parent in the call to ACRX_API_CLASS_BODY, since ACRX_NO_CONSTRUCTOR_CLASS_OBJ_BODY in tempapp.arx defines the parent and registers it in the Rx class dictionary. API_CLASS_BODY defines same functions as the other, but they go back to ARX kernel to resolve them instead of asking the object itself.

ACRX_NO_CONSTRUCTOR_CLASS_OBJ_BODY may only be called once in the entire system, since it installs stuff in the ARX class tree. API_CLASS_BODY can be linked into and loaded with several applications simultaneously, since it goes back to the Rx system to get the class information.

Tempapp.cpp

In tempapp.cpp, the API class implementation is generated using ACRX_NO_CONSTRUCTOR_CLASS_OBJ_BODY and registered with the ARX system.

"Implementation implementations" of the API class are also defined, derived from EntTemperature: DefaultTemperature, RegionTemperature and CircleTemperature. These implementations

need not have any presence in the "official" Rx class hierarchy. They "share" the ARX identity of EntTemperature.

One object from each of these three are implemented in

defaultTemp = new DefaultTemperature();

regionTemp = new RegionTemperature();

circleTemp = new CircleTemperature();

and then used to extend the protocol of the classes AcDbEntity, AcDbRegion and AcDbCircle in the lines

AcDbEntity::desc()->addX(EntTemperature::desc(), defaultTemp);

AcDbRegion::desc()->addX(EntTemperature::desc(), regionTemp);

AcDbCircle::desc()->addX(EntTemperature::desc(), circleTemp);

Notice that the ARX identity of EntTemperature is shared by all different implementation classes, but different implementation classes are associated with different entity types.

Tempapp adds a new AutoCAD command which allows you to select an entity and invoke the EntTemperature protocol extension on it, using

double temp = ACRX_X_CALL(pEnt, EntTemperature)->reflectedEnergy(pEnt);

Now along comes the rxhello9 application, defining a new entity type Jblob.

To demonstrate protocol extension a new class JblobTemperature is derived from EntTemperature to provide a new "implementation implementation" for temperature for the Jblob entity.

It registers the comand JBLOBEXT, which checks for availability of the temparature application using

acrxServiceIsRegistered(TEMPERATURE_SERVICE);

If the service is safely available, it adds its Jblob implementation of EntTemperature protocol extension using

JblobTemp = new JblobTemperature();

Jblob::desc()->addX(EntTemperature::desc(), JblobTemp);

Now, without any changes whatsoever to the ENERGY command, it can be used on Jblob entities as well as regions and circles.

