
Graphics Library Programming Guide 5-1

Chapter 5

5. User Input

This chapter tells you how to program your application to respond to input
from a user. User input can occur thorough a variety of devices, including the
keyboard, mouse and peripheral devices.

• Section 5.1, “Event Handling,” describes event handling mechanisms
and discusses input models.

• Section 5.2, “Input Devices,” describes the types of input devices
available and lists the values they report.

• Section 5.3, “Video Control,” tells you how to query and control video
parameters.

5.1 Event Handling

In the previous chapters, the emphasis has been on drawing graphics. You
probably want to do more than just watch graphics on the screen; the next step
is to add user input capability. A user interface provides a mechanism for
detecting user input, acting on the input received, and determining when user
input has ceased.

An input event is generated when you click a mouse button or press a key on
the keyboard. Input events and the system responses associated with them are
the dialogue used to communicate with the computer through the user
interface. Event handling is the process that manages this communication:
including rules that govern what constitutes an input event, how event
priorities are established, and how events are communicated back and forth
between the user and the computer.

5-2 User Input

User input events on the IRIS are handled by the X server (see the X Window
System documentation). You can set up user input using X facilities, using the
GL, or using a combination of X and GL known as mixed-mode, or mixed-model,
programming.

Working with X gives you the advantage of using X-based toolkits and widgets
to create your user interfaces. The X Window System provides facilities for
event management through the Xt routines for timed events and X event
routines for queued events. The X input model provides more information
than the GL for each event and allows for multiple server, screen and window
communication. If you want to use Motif™, Athena widgets, Xt, or multiple
server I/O, you must use the X input model. See the X Window System
documentation for more information about structuring X input environments.

For mixed-model programming, see the glresources() man page, and the
GLX group of man pages, all of which begin with the upper-case letters GLX.

A GL program can detect input events in two ways: queueing or polling.
Queueing saves input events and places them in an event queue, a section of
memory where the events are stored in the order received; the first event in the
queue is the first event to get processed. It is just like waiting in line to buy
movie tickets—the first person in line gets the first tickets.

Polling continually samples (checks) the device(s) for input. Polling is not very
efficient because the system spends a lot of time listening for input that could
be used for doing other tasks. It is possible for the system to miss an input
event that happens when it isn’t listening.

Queueing is the recommended way to manage user input. Queueing allows
you to process rapid up-and-down button transitions and capture all
momentary device state changes.

Another difference between queuing and polling is the effect that the window
system has on them. When you queue buttons and valuators, an event is
generated only for the process controlling the window that currently has input
focus.

Input is enabled for the window that has the cursor in it; that window
currently has the input focus. In a multiple window system input occurs in the
window that has input focus; it does not occur in any other windows that are
open concurrently.

Graphics Library Programming Guide 5-3

5.1.1 Queueing

You decide which devices to queue, and establish rules about what constitutes
a state change, or event, for those devices.

Any change in the state of a device for which queueing is enabled generates an
entry in the event queue. Each queue entry consists of the device number and
the current value of the device. If the input device is a button, the value is
either 1 (pressed) or 0 (released). If the device is a valuator, such as the x
position of the mouse, its value is an integer that indicates the position of the
device.

To use queueing:

1. Enable queueing for the selected device with qdevice() .

2. Check the queue for an event, using qread() , qtest() or blkqread() .

3. Perform the appropriate action for that event.

4. Return to the event loop

5. Disable event queueing when the event loop is exited.

For maximum efficiency, you should not put complicated redraw operations
inside the event loop and you should provide some mechanism for emptying
the queue when it gets full.

The input queue can contain up to 101 events at a time. To check for overflow,
you can queue the device QFULL. This inserts a QFULL event in the graphics
input queue of a GL program at the point where queue overflow occurred.
This event is returned by qread() at the point in the input queue at which data
was lost. Use qreset() to empty the queue when it gets full.

By default, only the pseudo-devices INPUTCHANGE and REDRAW are queued.

An INPUTCHANGE event appears when you direct the input focus to a new
window or to the background. When an INPUTCHANGE event occurs, the
identifier of the window that has input focus is placed on the queue; a 0 is
placed on the queue when input focus is removed.

A REDRAW event appears in the queue when you move or reshape a window,
when part of a window is uncovered or when the display mode changes.

5-4 User Input

GL subroutines for processing user input are listed next, with a brief
description of what the command does, followed by its ANSI C specification.

qdevice

qdevice() enables queueing for the specified device (dev) (for example, a
keyboard, button, or valuator). The argument of qdevice() is a device
number. Each time the device changes state, an entry is made in the event
queue.

void qdevice(Device dev);

unqdevice

unqdevice() disables the queueing of events from the specified device. If the
device has recorded events in the queue that have not been read, those events
remain in the queue. (You can use qreset() to flush the event queue.)

void unqdevice(Device dev);

isqueued

isqueued() finds out whether or not a specific device is queued. isqueued()

returns a Boolean value. TRUE indicates that the device is enabled for queuing;
FALSE indicates that the device is not queued.

boolean isqueued(short dev);

qenter

qenter() creates event queue entries. It places entries directly into the
program’s own event queue. qenter() takes two 16-bit integers, qtype and val,
and enters them into the event queue.

void qenter(short qtype, short val);

You can use any one of the next three subroutines—qtest() , qread() ,
blkqread() —to check the event queue for an entry.

Graphics Library Programming Guide 5-5

qtest

qtest() returns the device number of the first entry in the event queue; if the
queue is empty, it returns zero. qtest() always returns immediately to the
caller and makes no changes to the queue.

long qtest();

qread

qread() , like qtest() , returns the device number of the first entry in the event
queue. However, if the queue is empty, it waits until an event is added to the
queue. qread() returns the device number, writes the data part of the entry
into the short pointed to by data, and removes the entry from the queue.

long qread(short *data);

blkqread

blkqread() returns multiple queue entries. Its first argument, data, is an array
of short integers, and its second argument, n, is the size of the array data.
blkqread() returns the number of shorts returned in the array data, which is
filled alternately with device numbers and device values. Note that the
number of entries read is twice the number of queue entries, hence it can be at
most n/2.

You can also use blkqread() when only the last entry in the event queue is of
interest (for example, when a user-defined cursor is being dragged across the
screen and only its final position is of interest).

long blkqread(short *data, n);

qreset

qreset() removes all entries from the queue and discards them.

void qreset(void);

qgetfd

qgetfd() allows a GL program to use the IRIX system call select to determine
when there are events waiting to be read in the graphics input queue. A call to

5-6 User Input

qgetfd() returns a file descriptor that may be used as part of the readfds
parameter of the select system call. When select indicates that the file descriptor
associated with the graphics input queue is ready for reading, a call to qread()

or blkqread() does not cause the program to block.

long qgetfd(void);

tie

You can tie() a queued button to one or two valuators so that whenever the
button changes state, the system records the button change and the current
valuator position in the event queue. tie() takes three arguments: a button b
and two valuators v1 and v2. You tie() one valuator to a button by making v2
equal to 0. Whenever the button changes state, three entries are made in the
queue that record the current state of the button and the current position of
each valuator. You can untie a button from valuators by making both v1 and v2
equal to 0.

void tie(Device b, Device v1, Device v2);

attachcursor

attachcursor() attaches the cursor to the movement of two valuators. Both
of its arguments, vx and vy, are valuator device numbers that correspond to the
device that controls the horizontal and vertical location of the cursor,
respectively. By default, vx is MOUSEX and vy is MOUSEY. The valuators at vx
and vy determine the cursor position in screen coordinates. Every time the
values at vx or vy change, the system redraws the cursor at the new
coordinates.

void attachcursor(Device vx, Device vy);

To control cursor position from within a program, attach the cursor to GHOSTX

and GHOSTY. The program can then use setvaluator() on GHOSTX and GHOSTY

to move the cursor. attachcursor() , like blink() , is not reset to the default
when the program exits.

curson and cursoff

curson() and cursoff() determine the visibility of the cursor in the current
window. Use them to control the state of the cursor while drawing in the
selected window.

Graphics Library Programming Guide 5-7

curson() makes the cursor visible in the current window; cursoff() makes
it invisible.

void curson();
void cursoff();

By default, the cursor is on when a window is created.Use getcursor() to find
out whether the cursor is visible. See Chapter 11, “Frame Buffers and Drawing
Modes,” for more information on getcursor() .

noise

Some valuators are noisy; that is, they report small fluctuations, indicating
movement when no event has occurred. noise() allows you to set a lower
limit on what constitutes an event. The value of a noisy valuator v must change
by at least delta before the motion is recognized. noise() determines how
queued valuators make entries in the event queue. For example, noise(v,5)

means that valuator v must move at least five units before a new queue entry
is made.

void noise(Device v, short delta);

5.1.2 Polling

Polling immediately returns the value of a device that is a button or valuator,
regardless of which window has focus. For example, the statement
getbutton(LEFTMOUSE) returns 1 if the left button of the mouse is down and
0 if it is up. Programs that use polling should watch for changes to input focus
and adjust their behavior accordingly.

getvaluator

getvaluator() polls the status of a valuator. The argument to getvaluator()

is a valuator device number (val) that reflects the current state of the device.

long getvaluator(Device val);

5-8 User Input

getbutton

getbutton() polls the status of a button, whether the button is queued or not.
The argument to getbutton() is the number of the device you want to poll
(num). getbutton() returns TRUE if the button is down, FALSE if it is up.

Boolean getbutton(Device num);

getdev

getdev() polls up to 128 valuators and buttons concurrently. Specify the
number of devices you want to poll (n) and an array of device numbers (devs).
(See Tables 5-1, 5-2, and 5-3 for listings of device numbers.) The vals array
returns the state of each device in its corresponding array location.

void getdev(long n, Device devs[], short vals[]);

The following sample program, input.c, uses queueing to control a simple
drawing program, that lets you sketch in the window with the left mouse
button.

#include <gl/gl.h>
#include <gl/device.h>

#define X 0
#define Y 1

main()
{

short val, mval[2], lastval[2];
long org[2], size[2];
Device dev, mdev[2];
Boolean run;
int leftmouse_down = 0;
lastval[X] = -1;
prefsize(400, 400);
winopen("input");
color(BLACK);
clear();
getorigin(&org[X], &org[Y]);
getsize(&size[X], &size[Y]);
mdev[X] = MOUSEX;
mdev[Y] = MOUSEY;
getdev(2, mdev, lastval); /* initialize lastval[] */
lastval[X] -= org[X];
lastval[Y] -= org[Y];

Graphics Library Programming Guide 5-9

qdevice(LEFTMOUSE);
qdevice(ESCKEY);
qdevice(MOUSEX);
qdevice(MOUSEY);
color(WHITE); /* prepare to draw white lines */

 while (1) {
switch (dev = qread(&val)) {

case LEFTMOUSE:
leftmouse_down = val;
break;

case MOUSEX:
val[X] = val - org[X];
break;

case MOUSEY:
mval[Y] = val - org[Y];
if (leftmouse_down) {

bgnline();
v2s(lastval);
v2s(mval);

endline();
}
lastval[X] = mval[X];
lastval[Y] = mval[Y];
break;

case ESCKEY:
exit(0);

}
 }
}

5-10 User Input

5.2 Input Devices

Input devices accept user input and translate that input into data that a
program can use. The GL supports three classes of input devices:

Buttons Return a Boolean value: FALSE when they are not pressed
(open) and TRUE when they are pressed (closed).

Valuators Return an integer value that represents their current status.
For example, a mouse is a pair of valuators: one reports
horizontal position and the other reports vertical position.

Pseudo-devices Return information about other system events. For example,
the keyboard returns ASCII characters. Most of these
pseudo-devices register events. The keyboard device reports
character values when keys (or combinations of keys) are
pressed. If you press the a key, an ASCII a is reported; if you
press the <Shift> key, nothing is reported, but if you hold
down the <Shift> key and then press the a key, an ASCII A
is reported.

Devices are named by a unique integer within the domain 1 to 32767, inclusive.
Table 5-1 shows how the device domain is organized.

Facilities exist to let you define your own input devices. Additional
information is available in the GL man pages.

Type Range Device Class

0x001 — 0x0FF Buttons

0x100 — 0x1FF Valuators

Reserved 0x200 — 0x2FF Pseudo-devices

Devices 0x300 — 0xEFF Reserved

0xF00 — 0xFFF Additional Buttons

0x1000 — 0x2FFF Buttons

User-definable 0x3000 — 0x3FFF Valuators

Devices 0x4000 — 0x7FFF Pseudo-devices

Table 5-1 Class Ranges in the Device Domain

Graphics Library Programming Guide 5-11

5.2.1 Buttons

User input buttons include the mouse buttons, keyboard keys, buttons on a
dial and button box, digitizer tablet buttons, and a menu button. Table 5-2 lists
the names of the buttons and their descriptions.

Devices Description

MOUSE1 Right mouse button

MOUSE2 Middle mouse button

MOUSE3 Left mouse button

RIGHTMOUSE Right mouse button

MIDDLEMOUSE Middle mouse button

LEFTMOUSE Left mouse button

SW0...SW31 32 buttons on dial and button box

AKEY...PADENTER All the keys on the keyboard

BPAD0 Pen stylus or button for digitizer tablet

BPAD1 Button for digitizer tablet

BPAD2 Button for digitizer tablet

BPAD3 Button for digitizer tablet

MENUBUTTON Menu button

Table 5-2 Input Buttons

5-12 User Input

5.2.2 Valuators

Valuators are single-value input devices. Valuators report a 16-bit integer
value, such as the horizontal and vertical position of the mouse, or the current
setting of a dial. Table 5-3 shows the valuator names and descriptions.

The following devices are valuators that return specific information about the
system.

Timer Devices

The GL timer devices are used to get input events at regular intervals. The
timers use an internal clock that approximates the screen refresh interval. The
clock rate is approximately 67 Hz. The event “time” returned by the timers is
the frame count recorded during the elapsed event. You should not use GL
timers to measure chronological time, nor should you use them to synchronize
your graphics programs. To record events less frequently, use noise() .

For example, if you call noise (TIMER0, 30), only every 30th event is
recorded, generating one event approximately every half second.

Devices Description

MOUSEX x valuator on mouse

MOUSEY y valuator on mouse

DIAL0...DIAL7 Position of dials on dial and button box

BPADX x valuator on digitizer tablet

BPADY y valuator on digitizer tablet

CURSORX x valuator attached to cursor (usually MOUSEX)

CURSORY y valuator attached to cursor (usually MOUSEY)

GHOSTX x ghost valuator

GHOSTY y ghost valuator

TIMER0...TIMER3 Timer devices

Table 5-3 Input Valuators

Graphics Library Programming Guide 5-13

Cursor Devices

The cursor devices are pseudo-devices equivalent to the valuators currently
attached to the cursor. (See the attachcursor() man page for more
information.)

Ghost Devices

Ghost devices, GHOSTX and GHOSTY, do not correspond to physical devices,
although they can be used to change a device under program control. For
example, to drive the cursor from software, use
attachcursor(GHOSTX,GHOSTY) to make the cursor position depend on the
ghost devices. Then use setvaluator() on GHOSTX and GHOSTY to move the
cursor.

5.2.3 Keyboard Devices

The keyboard device returns ASCII values that correspond to the keys typed
on the keyboard. The device interprets keyboard movements in the standard
manner; for instance, it reports an event only on a downstroke, taking into
account the <Ctrl> and <Shift> keys.

Note: There is a hardware mechanism in the keyboard that reads multiple
key-down events if the key is held down and begins to auto-repeat.

Be careful to understand the difference between the device and the values it
returns when you queue the keyboard.

If your program contains the instruction: qdevice(KEYBD), the statement
dev = qread(&val) returns the following:

dev = KEYBD
val = the ASCII integer index of the character pressed.

To test for individual keystrokes, you can use instructions of the format:

qdevice(AKEY);

This returns the device AKEY when the A key is pressed and the value 1 when
the key is pressed; 0 when it is released.

5-14 User Input

5.2.4 Window Manager Tokens

The tokens listed in Table 5-4 can be queued as pseudodevices to monitor GL
window manager events, which are generated when windows are activated or
moved. In all cases, the system returns the window identification number (id)
of the window experiencing the event.

Token Description

DEPTHCHANGE Indicates an open window has been pushed or popped. This token
is not supported.

DRAWOVERLAYIndicates damage to the overlay planes. Queue this token if you use
overlay planes.

INPUTCHANGE Indicates a change in the input focus. If the value is 0, input focus
has been removed from the process. If the value is non-0, it indicates
the window id of the window that has just gained input focus.

REDRAW The window manager inserts a REDRAW token each time the
window needs to be redrawn. The REDRAW token is queued
automatically.

REDRAWICONICQueues automatically when iconsize() is called. The window
manager sends this token when a window needs to be redrawn as
an icon by the program itself.

WINSHUT When queued, the window manager sends this token when Close
is selected from a program’s Window (frame) menu, or when
the close fixture is selected from the title bar of a program’s window.
If WINSHUT is not queued, the Close item on the program’s
Window menu appears grayed out and has no effect if selected.

WINQUIT When queued, the window manager sends this token rather than
killing a process when Quit is selected from a program’s
Window (frame) menu.

WINFREEZE
WINTHAW

If queued, the window manager sends these tokens when windows
are stowed to icons and later unstowed, rather than blocking the
processes of the stowed windows. These devices should be queued
if the program plans to draw its own icon (see iconsize()) or is
a multiwindow application.

Table 5-4 Window Manager Event Tokens

Graphics Library Programming Guide 5-15

5.2.5 Spaceball Devices

Table 5-5 lists the devices returned by qread() when the optional Spaceball
input device sends an event onto the queue.

For more information about the optional Spaceball input device, see the
documentation that is packaged with the Spaceball option.

Devices Description

SBPERIOD Number of periods of 0.25 ms since sending the last non-0 set of
Spaceball data

SBTX Right/left push

SBTY Up/down push

SBTZ Away/towards push

SBRX Twist about right/left axis

SBRY Twist about up/down axis

SBRZ Twist about away/towards axis

SBBUT1 Button 1

SBBUT2 Button 2

SBBUT3 Button 3

SBBUT4 Button 4

SBBUT5 Button 5

SBBUT6 Button 6

SBBUT7 Button 7

SBBUT8 Button 8

SBPICK Pick button

Table 5-5 Spaceball Input Buttons

5-16 User Input

5.2.6 Controlling Devices

The GL provides subroutines that initialize device values and control the
characteristics and behavior of the system’s peripheral input/output devices.
For example, some of these routines turn the keyboard click on, clkon() , and
off, clkoff() , or set the keyboard bell. You set these controls to your
preference or needs.

setvaluator

setvaluator() assigns an initial value (init) to a valuator. The arguments min
and max are the minimum and maximum values the device can assume.

void setvaluator(Device val, short init, short min, short max);

clkon

If clkon() is called, the keyboard makes an audible click whenever a key is
pressed.

void clkon(void);

clkoff

clkoff() turns off the keyboard click.

void clkoff(void);

lampon

lampon() and lampoff() control the four lamps on old-style keyboards
labeled L1, L2, L3, and L4 on the keyboard. Each 1 in the four lower-order bits
of the lamps argument to lampon() turns on the corresponding keyboard lamp.

void lampon(Byte lamps);

lampoff

Each 1 in the four lower-order bits of the lamps argument to lampoff() turns
off the corresponding keyboard lamp.

void lampoff(Byte lamps);

Graphics Library Programming Guide 5-17

ringbell

ringbell() rings the keyboard bell.

void ringbell(void);

setbell

setbell() sets the duration of the keyboard bell: 0 is off, 1 is a short beep, and
2 is a long beep.

void setbell(Byte mode);

dbtext

dbtext() writes text to the LED display in a dial and button box. The string
str must be eight or fewer uppercase characters.

void dbtext(char str[8]);

setdblights

setdblights() controls the 32 lighted switches on a dial and switch box. For
example, to turn on switches 3 and 7, the third and seventh bits to the right of
mask must be set to 1; that is, (1<<3)|(1<<7).

void setdblights(unsigned long mask);

5.3 Video Control

You can query the status and control the behavior of certain video parameters.
You can also determine information about the video monitor used on your
system and specify its operating parameters with the following subroutines.

Note: RealityEngine systems use a graphical user interface to set the video
format. See the RealityEngine Owner’s Guide for information about
this interface and the video formats available.

5-18 User Input

blankscreen

blankscreen() turns the screen display on and off. b=TRUE stops display;
b=FALSE restarts display.

void blankscreen(Boolean bool);

blanktime

blanktime() sets the screen blanking time-out. By default, the screen blanks
(turns black) after the system receives no input for about 15 minutes. This
protects the color display. blanktime() changes the amount of time the
system waits before blanking the screen. It can also disable the screen blanking
feature.

void blanktime(long nframes);

nframes specifies the screen blanking time-out in frame times based on the
standard 60 Hz monitor. For software compatibility, the factor of 60 is used,
regardless of the monitor type. To calculate the value of nframes, multiply the
desired blanking latency period (in seconds) by 60. For example, when nframes
is 1800, the blanking latency period is 5 minutes. There are 60 frames per
second; nframes is 60 times the number of seconds that the system waits before
blanking the screen. When nframes is 0, screen blanking is disabled.

setmonitor

setmonitor() sets the monitor to one of the video formats listed in Table 5-6.

void setmonitor(short type);

Not all formats are supported by all systems. If a format is not supported, it is
ignored. Some formats may require the use of optional products.

Note: IRIS Indigo systems do not support setmonitor() . Elan supports
NTSC, PAL, HZ60, HZ72, STR_RECT, and RS-343 monitors.

getmonitor

getmonitor() queries the type of the current display monitor, as listed in
Table 5-6.

Graphics Library Programming Guide 5-19

Table 5-6 lists monitor type tokens and the video formats they represent.

getothermonitor

getothermonitor() returns the other monitor types supported by the
hardware. Most systems are not limited to one optional video mode. The
display hardware can support all the video modes. getothermonitor()

normally returns MON_ALL showing that all monitor types are supported.
getothermonitor() returns MON_GEN_ALL if the optional genlock board is
installed in the system.

setvideo

setvideo() sets the specified video hardware register, reg, to the indicated
value. setvideo() and getvideo() support several video boards. The DE_R1
is physically present on IRIS-4D/B/G/GT/GTX systems, and is emulated on
other systems.

Type Video Format

STR_RECT 120Hz stereo format, if supported by hardware

HZ90_STEREO 90Hz stereo format, if supported by hardware

HZ76 76Hz, noninterlaced

HZ72 72Hz, noninterlaced

HZ60 60Hz noninterlaced

HZ30 30Hz interlaced

HZ30_SG 30Hz noninterlaced with sync on green

A343 RS-343 component RGB (1280×960), if supported by hardware

HDTV HDTV format, if supported by hardware

PAL PAL- 625 line component RGB (768×575) or SECAM

NTSC NTSC - RS1070A 525 line component RGB (768×575)

VGA VGA component RGB (640×497)

PR60 Pixel replication of one-quarter resolution 60Hz format

Table 5-6 Monitor Types

5-20 User Input

getvideo

getvideo() returns the value of the specified video hardware register. The
returned value of getvideo() is the one read from register reg, or -1, which
indicates that reg is not a valid register, or that you queried a video register on
a system without that particular board installed

Table 5-7 lists the video register values for setvideo() and getvideo() .

Video Option Board Register

Display Engine Board DE_R1

CG2/CG3 Composite Video and Genlock Board CG_CONTROL

CG_CPHASE

CG_HPHASE

CG_MODE

VP1 Live Video Digitizer Board VP_ALPHA

VP_BRITE

VP_CMD

VP_CONT

VP_DIGVAL

VP_FBXORG

VP_FBYORG

VP_FGMODE

VP_GBXORG

VP_GBYORG

VP_HBLANK

VP_HEIGHT

VP_HUE

VP_MAPADD

Table 5-7 Video Register Values

Graphics Library Programming Guide 5-21

videocmd

videocmd() initializes the Live Video Digitizer option. If you don’t have a Live
Video Digitizer, you might want to skip this section.You can initialize the Live
Video Digitizer in either RGB or composite video mode, for both NTSC and
PAL video sources. The cmd parameter initiates the specified command.
Table 5-8 lists the values for cmd, which are defined in the file gl/vp1.h.

VP_MAPBLUE

VP_MAPGREEN

VP_MAPRED

VP_MAPSRC

VP_MAPSTROBE

VP_PIXCNT

VP_SAT

VP_STATUS0

VP_STATUS1

VP_VBLANK

VP_WIDTH

Token Description

VP_INITNTSC_COMP Initialize the optional Live Video Digitizer
for a composite NTSC video source

VP_INITNTSC_RGB Initialize the Live Video Digitizer for an
RGB NTSC video source

VP_INITPAL_COMP Initialize the Live Video Digitizer for a
composite PAL video source

Table 5-8 Live Video Digitizer Commands

Video Option Board Register

Table 5-7 (continued) Video Register Values

5-22 User Input

VP_INITPAL_RGB Initialize the Live Video Digitizer for an
RGB PAL video source

Token Description

Table 5-8 Live Video Digitizer Commands

